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Magnetic moment of an electron gas in crossed, 
homogeneous electric and magnetic fields 
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Abstract. The magnetic properties of a Dirac electron gas in crossed, homogeneous electric 
( E )  and magnetic (H) fields are studied. An explicit expression for the magnetic moment 
of the gas is obtained. The calculations in the degeneracy limit of the gas show that (i) 
for values of E / H  >0.01 there is a clear suppression of the transition from paramagnetism 
to diamagnetism, (ii) there is a weakening of the quasi-periodic oscillations of the magnetic 
moment observed in the E=O case, again for E/H>0.01,  and (iii) there is a distinct 
possibility of spontaneous magnetisation for the values of E / H  B0.9. 

1. Introduction 

The magnetic properties of a non-interacting Dirac electron gas in intense magnetic 
fields near the quantum critical value H ,  = 4.414 x 1013 G were studied by Canuto 
and Chiu (1968). It was observed that, for a given field strength, the magnetisation 
increases with the particle density to the maximum value and then decreases, eventually 
becoming negative as higher magnetic states are excited. There was no possibility of 
spontaneous magnetisation. However, Lee et a1 (1969) suggested a new mechanism 
called Landau orbital ferromagnetism (LOFER) which leads to spontaneous magnetisa- 
tion of the gas without the usual spin-spin interactions. 

The work of Canuto and Chiu was extended by the present authors (Achuthan et 
a1 1982, to be referred to as I) to a particular inhomogeneous magnetic field (IMF) 
in which the possibility of spontaneous magnetisation was demonstrated as arising 
purely from the space dependence of the magnetic field, and was not due to any 
LOFER type mechanism, though this mechanism may exist as well. 

It was remarked in I that the energy of the electron in the IMF was not very 
different from that in the homogeneous case. So it was felt that a search should be 
made for other IMF in which the electron energy itself will be different from the 
hoinogeneous case, and will give appreciable deviations both in magnetic and thermo- 
dynamic properties. In this context we shall exploit the similarity of the electron 
motion in certain IMF and crossed homogeneous electric and magnetic (CHEM) fields. 

It has been observed by Landau and Lifshitz (1975) and others (see, e.g., 
Artsimovich and Lukyanov 1980, Alfven and Falthammar 1963) that for perturbative 
inhomogeneities the force acting on the charged particle and also its trajectory 
will be similar, if such an IMF is replaced by CHEM fields. This was found to be true 
for another IhiF (Achuthan ef a1 1983a) where the inhomogeneity was non-perturba- 
tive. Such an analogy seems to hold for a class of two-dimensional magnetic fields 
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that possess neither rotational nor reflection-time-reversal symmetries (Witten 1979). 
This analogy is further strengthened in the quantum mechanical treatment, where 
both the CHEM fields and some special types of IMF exhibit the removal of the infinite 
degeneracy (which existed when there was only a homogeneous magnetic field) with 
respect to a momentum component in the plane perpendicular to the magnetic field. 

In view of the above observations it is natural to expect that the study of the 
thermodynamic and quantum electrodynamic properties of electrons in CHEM fields 
is an indirect way to investigate electron properties in IMF. 

A further impetus for such a study, independent of the above considerations, is 
the suggestion that in the magnetosphere of a neutron star there exist not only intense 
magnetic fields but also electric fields (Daugherty and Lerche 1975). 

In this paper we study the problem of the magnetic moment of a relativistic electron 
gas in homogeneous E and H fields which satisfy the conditions E * H = O  and 
H 2  - E 2  > 0. In § 2 we derive the expression for the magnetic moment of the electron 
gas. In 8 3 we present the numerical results of our calculations for the degenerate 
electron gas. The results show that in addition to other deviations from the E = 0 
case, there is a distinct possibility of spontaneous magnetisation. 

2. Magnetic moment 

The magnetic moment M is obtained from the thermodynamic potential n using the 
relation a= -M H. For a non-interacting electron gas R can be written in terms 
of the single-particle energy of the electron E, as (Landau and Lifshitz 1959) 

Cl = - k T  1 In (1 +exp [(p(@ - € j ) ] )  
i 

where = l / k T  and C; is the chemical potential plus electron rest energy. The energy 
of the electron in the CHEM fields is obtained by solving the Dirac equation (Canuto 
and Chiuderi 1969):: 
€ N , p x , p z  =mc2(1 - E 2 / H 2 ) ” 2 [ 1  + (p , /mc)*+2N(H/HC)(1  - E 2 / H  2 1 / 2  ] 1 / 2  + c p x ( E / H )  

( 2 )  
where N = n +is +$ with n = 0, 1 , 2 ,  . . . , describing the Landau levels and s = *1 
describing the spin polarisations. 

The summation in equation (1) indicates a sum over the discrete quantum numbers 
n and s and integration over the momentum pL. Furthermore, the summation also 
implies the inclusion of an operator definition of the density of states, necessitated 
by the presence of p x  in the energy expression. Using the method developed in I, we 
get the following expression for n: 

n=------ c (1) drl I_, In (1 + e x p [ i h  - F O , ~ , ~ ) I ~ Q  
kTV L‘il)  +a3 

* ( * A , ) 3  [i l,,,i 
U ( N + l )  L’INI 

+ N = l  f (1 L ( N * l )  c i N + l ) d t l - I  L t N )  c ( N ) d s )  

+ In this reference the fields are chosen such that H is directed along the i axis and E along the y axis 
with t h e g a u g e A , = - y H , A , = A ,  = O a n d A o = - Y E .  
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where 

In equation (3) the spin summation has been simplified using the two-fold spin 
degeneracy of the energy as in the E = 0 case. Before differentiating R with respect 
to H to obtain the magnetic moment, we transform the limits of the 7 integrations 
from [L, U ]  to [-1, 11, thereby avoiding singularities which would otherwise arise at 
the limits of the 7 integrations. Thus we get 

where e L-,rl,L and e N,,l,6 are obtained from  EN,?,^ by’substituting 

tl = (E/H)+t1[2(N+1)H/H,]”2 and 7 = (E/H) + t1(2NH/Hc)1/2 

respectively. The F and F‘ in equation (4) are the Fermi functions. 
We know that the electron gas becomes degenerate when E N,,,,c < p and T -P 0. 

In this situation, the expression In( 1 + exp[@(p - E ) ] )  appearing in R and M can be 
replaced by p i p  - E  ) and the Fermi functions FN,n,I = Fk,llmS = 1. Furthermore, the 
5 integrations become finite. With these, the magnetic moment M under the degener- 
ate condition reduces to 
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Here again the finite limits of the 5 integration, arising from the degeneracy condition, 
have been transformed to [-1,  + l ]  by the substitution 5 = t2dN where 

Further 

and E N , r l , f Z  and E ~ , f , , r 2  are obtained from E N,f i , l  and E k,cl,c by the replacements [ = t2dN 
and 5 = t2dh, respectively. The susceptibility ,y which is defined through the relation 

M/V=,yH (6) 
can be easily obtained from the expressions for M given in equations (4) and (5). 

3. Numerical results and discussion 

The magnetisation A = M /  V and susceptibility ,y for the degenerate electron gas have 
been computed using an IBM 370/155, for several values of H/H,, EIH and I.. Our 
results for E = 0 are identical to those found by Canuto and Chiu (1968) .  However, 
for E # 0, there are marked deviations from the E = 0 case. The variations of ,U with 
H / H c  and are shown in figures 1 and 2 ,  respectively, keeping the ratio EIH as a 
parameter. 

Two of the features which were observed, when only a homogeneous magnetic field 
was present, are suppressed with the increasing values of E/H.  These are the quasi- 
periodic oscillations of ,y with variations in 1/H (the famous de Haas-van Alphen 
oscillations, see figure 3 )  and the paramagnetic-to-diamagnetic transition when higher 
quantum levels are occupied. With the contribution due to the spin of the electron 
(paramagnetic part), the orbital motion (diamagnetic part) and also the relativistic 
effects, all taken together in expressions for A, it is not immediately possible to give 
a quantitative explanation for the above phenomena. Even at the non-relativistic 
level, where the separation of the spin and orbital contributions is possible, one has 
the problem that the density of states factor, in terms of which the oscillatory 
phenomenon is explained in the E = 0 case (Vonsovskii 1974), cannot be obtained 
explicitly when E # 0. However, one can give a qualitative explanation as follows. It 
is known that when only a homogeneous magnetic field is present, the magnetisation 
is discontinuous if one considers just the transverse (two-dimensional) motion of the 
electron. The discontinuity is removed in three-dimensional motion where the con- 
tinuous variable p z  enters the energy spectrum and the magnetisation exhibits a 
quasi-periodic oscillatory behaviour. With E # 0, there is another continuous variable, 
i.e. p x  appearing in the energy expression which may lead to the suppression of 
oscillations. 
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Figure 1. The variation of .U (in units of pB/A:j with H/H, ,  for cc = 2.5 .  
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Figure 2. The variation of .U (in units of 
note that JK is scaled by a factor of ten. 

with p,  for H / H ,  = 0.5. For E / H  = 0.9, 
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H , I H  

Figure 3. The suppression of the oscillations of the susceptibility ,y ( ~ 3 . 6 5  x lo-*) with 
H J H  for p = 2.5, as EIH is increased. 

An interesting observation arising from our calculations is that, for given values 
of H / H ,  and chemical potential ,LL, the number of levels after which the summation 
in equation ( 5 )  is terminated reduces when E / H  is increased. The decrease in the 
energy of the electron in the highest filled level caused by this would be off-set by 
the explicit presence of p x  in the energy expression in equation (2), so that the chemical 
potential is kept at its original value. Now, with the preclusion of the higher Landau 
levels whose negative contributions make possible the paramagnetic-to-diamagnetic 
transition, one finds no such transition here for large values of E. 

The magnetic induction B inside the electron gas magnetised by the impressed 
field H is given by 

B = , L L ~ ( H  +A)  (7 )  

where , L L ~  is the magnetic permeability. If the magnetisation A matches the induction 
B, the gas may exhibit spontaneous magnetisation. For this to occur one must have 

& > H. (8) 

When E = 0, it was shown by Canuto and Chiu (1968) that the maximum of J% is 
only about H. Thus there was no possibility of spontaneous magnetisation then. 
Now, with the introduction of the crossed electric field, our results show that the 
condition (8) can be satisfied for large vaues of E/H.  Table 1 lists the values of A 
for several choices of E / H  corresponding to two values of H / H ,  and ,LL = 5.0. It can 
be seen that for E / H  = 0.9 and H = 2.21 x G condition (8) is met. Hence a 
distinct possibility of spontaneous magnetisation is seen to exist. 
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Table 1. Change of magnetisation A with E/H.  For E / H  = 0.9 and H = 2.21 x 1013 G, 
A > H which leads to the possibility of spontaneous magnetisation. 

EIH H = 2.21 x 1013 G H =4.41 x 1013 G 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

2.12 x 1 o ' O  3.41 x 10" 
4 . 8 0 ~  10" 3.08 x 10" 
1.07 x 10'' 6.03 x 10" 

2.55 x 10'' 1.53 x 10" 

5.66 x 10'' 3.14 x 10l2 

1.59 x 1 0 ' ~  8.67 x 10'' 

1.74 x 10" 1.02 x 10l2 

3 . 8 0 ~  10" 2.12 x l o f 2  

8 . 7 0 ~  10'' 4.95 x l o i2  

4.52 x 1013 2 . 2 9 . ~  1013 

From the nature of the results of this paper, we can expect that the study of other 
thermodynamic properties of an electron gas in combined electric and magnetic fields 
could yield further interesting results. In fact our work on this topic to be published 
in a companion paper (Achuthan et a f  1983b) does justify this expectation. 
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